太极计划亮相中国航天大会 相关报道抢先看 中科院自2008年开始论证我国空间引力波探测的可行性,提出了我国空间引力波探测“太极计划”,确定“单星、双星、三星”的“三步走”发展战略和路线图。2019年8月,我国首颗空间引力波探测技术实验卫星“太极一号”成功发射,标志着太极计划“三步走”第一步任务目标已成功实现。 在2020年9月18日召开的中国航天大会主论坛上,中国科学院院士、空间引力波探测“太极计划”首席科学家吴岳良发布了“太极二号”双星计划提前迎来的消息。目前,“太极一号”转入拓展实验阶段,“太极二号”双星计划启动后,也正在按照原定计划稳步向前推进。“太极二号”双星计划在整个“太极计划”中具有承上启下的重要意义,以此为契机,“太极计划”计划将于2023年后发射“太极二号”卫星,2033年左右发射“太极三号”卫星,从而完成太空卫星编队的部署。届时,三颗卫星将在绕日轨道上组成一个边长300万公里等边三角形卫星编队,帮助人类更好地探索和认识恒星、星系和黑洞的并和与演化。 吴岳良院士的报告引起了社会的热烈反响,新华社、央视网、中国新闻网、每经网、朝闻天下、光明网等媒体相继报导了这一重大进展。【新闻链接】 新华社:中科院启动“太极二号”双星计划探测空间引力波 http://www.xinhuanet.com/2020-09/19/c_1126515081.htm 央视网:http://news.cctv.com/2020/09/20/ARTIbuuOb3VIeWn6uJgNvEqz200920.shtml 中国新闻网:中科院正按规划路线图启动空间引力波探测计划第二步“太极二号”双星计划http://www.chinanews.com/gn/2020/09-18/9294267.shtml 每经网:http://www.nbd.com.cn/articles/2020-09-20/1508849.html 朝闻天下:http://www.cas.ac.cn/spx/202009/t20200921_4760540.shtml 光明网:https://www.sohu.com/a/419509040_162758 环球科学网:https://finance.sina.com.cn/tech/2020-09-21/doc-iivhvpwy8046170.shtml
太空浩渺深邃,驱动其诞生、演化、膨胀的隐秘“暗”物质与能量长什么样?万物繁复多变,是否有一种统一而“简洁”的理论和模型解释所有现象?宇宙留下“时空涟漪”,如何捕捉这美妙却微弱的信息?宇宙图景幽深、神秘,却让人如痴如醉。这便是中国科学院院士、中国科学院理论物理研究所研究员吴岳良面前的物理世界。“宇宙充满未解之谜,吸引着我不断思考,挑战自我、探索未知。”近40年来,吴岳良“仰观宇宙之广大,俯探学问之前沿”,努力做出世界一流的物理学研究。大工程,探索“隐秘的美好”近百年来,人类对宇宙的认识取得了巨大的进步。然而,仍有无数的谜团尚未揭开。其中,暗物质、暗能量被认为是21世纪现代物理学和天文学天空中的“两朵乌云”。“它们是本世纪物理学中最大的科学问题,揭开这两大谜团,将带来一场新的物理学革命。”吴岳良告诉《中国科学报》。物质粒子是宇宙的基本构成之一。通俗来说,暗物质就是既不发射光,也不吸收和反射光的物质;暗能量即驱动宇宙运动的一种“神秘”能量,两者都不可被基于电磁波的现有技术直接观测或检测到。但事实上,逐渐累积的大量天文观测数据通过引力效应表明了大量暗物质暗能量的存在,且成为了宇宙的主要组分,约占百分之九十五以上。寻找暗物质、研究暗能量的本质,将对物质、时空和宇宙的起源等基本问题有更深的认识,这也成为国际物理学和天文学界研究的热点。10年前,吴岳良作为“暗物质、暗能量的理论研究及实验预研”首席科学家,凝聚国内相关优势力量向“两朵乌云”发起挑战。经过10年的艰苦探索,研究团队取得了一系列具有国际影响力的成果。比如:在我国暗物质实验探测方面,从无到有形成了地下到空间的直接和间接暗物质探测两个大平台,突破了一系列关键探测技术;在理论研究方面,提出了解释暗物质的模型和机制,极大推动了实验的开展。在这个过程中,我国暗物质的研究力量逐渐建立并愈发强大。“通过项目研究,促进了我国暗物质理论与实验研究的结合。暗物质暗能量是在探索未知,在某种意义上,我们与国外同时起步,如今也处在同样有竞争力的水平上。”吴岳良对10年来的进步感到欣慰而满意。在科学家苦苦追寻暗物质暗能量的踪迹与奥秘之时,“引力波”被捕捉到了,这给了科学家们极大的鼓舞。2016年,美国激光干涉引力波天文台(LIGO)宣布探测到了双黑洞合并事件的引力波,同年,中科院也对外披露了我国引力波空间探测计划——“太极计划”。该计划可追溯到2008年——在中科院的支持下,胡文瑞院士组织我国科学家对其论证,且在2012年由吴岳良代表中国空间引力波探测工作组在欧空局eLISA首次联盟会议上报告该计划。按计划,我国将在2033年前发射引力波探测卫星组,进行中低频波段引力波的直接探测。吴岳良再次挑起重担,担任“太极计划”的首席科学家。吴岳良表示,“当前我们观察到的宇宙现象依赖于电磁相互作用,引力波是另外一种探测手段,而空间引力波探测则可以看到更广、更深的宇宙信息和天体现象,包括暗物质暗能量、宇宙早期形成与演化等。”2019年12月25日,我国首颗空间引力波探测技术实验卫星“太极一号”在历经4个月严格测试和实验后,各项功能、性能指标满足研制总要求,在轨测试实验取得成功。“这是科学院有史以来,在空间探测技术难度如此大的情况下,依然在1年之内建成并完成目标的科学卫星。我作为参与者和推动者,感到欣喜和满意。”吴岳良说,目前,太极一号在轨验证的各项技术指标超过任务预期目标,他们正积极筹备太极二号的双星实验。但吴岳良深知,空间引力波探测技术是当前人类所掌握的精密测量和控制技术的“极限”,未来挑战巨大。至今,在吴岳良的办公室,粘贴着一张写满密密麻麻行程的“太极一号”计划的时间表,旁边是一张有着他的签名的“军令状”。“我们希望以国际合作竞争的方式,共同突破关键技术,赶上国际水平。”吴岳良爽朗的笑声中充满了对未来的坚定和信心。纯理论:追寻“大一统”的简洁美“理论物理只有世界第一,没有第二。”在吴岳良心中,导师周光召先生的这句话是自己科学研究路上的指路明灯。他努力创造一套属于中国学者提出的、被国际所认可的物理学新理论新概念。历经20多年的坚持,吴岳良于2018年在揭秘爱因斯坦统一场论的研究中取得突破——创建了超统一场论。吴岳良说,自1915年爱因斯坦创立广义相对论以来,构建一套能够统一描述自然界已知基本相互作用的理论,是所有理论物理学家所追求的梦想。爱因斯坦花费了其后半生几乎所有的时间探寻统一场论。追寻大一统的简洁之美,也是吴岳良的梦想。1996年,吴岳良回国后与周光召开始共同研究大一统理论。次年,他们在《中国科学》杂志上发表了题为《对所有基本力的一种可能的大统一模型》的研究论文,这是他们最初的想法。20多年来,除却必要的行政事务,吴岳良无时无刻不在思考着这些问题,“做理论物理研究有个好处,就是随时随地可以开始工作,早上醒来、走在路上都可以思考。”吴岳良说。吴岳良提出了超统一场论,引起国际同行广泛关注。其涉及对时空观念、几何观念和宇宙观念以及物质观念和能量观念的重新认识,将为探索终极统一理论打开一扇新窗口。他解释说,爱因斯坦广义相对论认为“引力是弯曲时空的表现”,而他要抛开弯曲时空的概念,直接在平坦时空中引入引力场作为量子场,并在这个场中将“引力、电磁力、强相互作用力、弱相互作用力”这4种基本相互作用进行统一的描述。挑战与众不同的理论,并不是一件容易的事。在吴岳良看来,兴趣、热爱、坚持与不断思考,是支撑他研究不断取得突破的重要因素。“尽管在上个世纪有国外科学家提出相关的统一理论,但我们至少有属于自己提出的既在理论上自洽又与现有实验一致且有新的理论预言的理论,但理论最终都需要经过实验来检验。”吴岳良说。作为理论物理学家,吴岳良对理论物理有着深刻地理解。他坚信,物理一定是简单的,规律一定是简洁的。“把所有物理现象通过严密的数学逻辑推理,总结抽象成一个最具有普遍意义和规律的理论,例如众所周知的量子理论、相对论、牛顿理论等,从而可应用至各个方面。这也是中科院专门成立理论物理所的初衷和使命。”谢恩师:承袭先贤做一流学问对吴岳良来说,父亲指引他走上了理论物理之路。“父亲告诉我,要做最前沿的工作,要找最好的导师。我觉得理论物理的魅力在于探索未知,具有前沿性和很大挑战性。”这是吴岳良选择理论物理的初衷。而在之后近40年的科研人生中,中国科学院院士、“两弹一星”元勋周光召是他的“领路人”。1982年,吴岳良考入周光召门下作硕士生和博士生。他说,导师的言传身教,在自己人生观、价值观和世界观的形成上,都打下了深刻的烙印。“周先生的一生与国家的需要紧密结合,他希望为国奉献的传统在年轻人中传承。”吴岳良回忆说,“这也是从彭先生那里传承下来的,彭先生当时回国的时候就说‘回国不需要理由,不回国才需要理由’”。1986年,吴岳良即将博士毕业并计划到国外开展博士后研究,周光召问他,“你将来‘翅膀硬了’,可能会面临很多选择,但一旦国家需要你做出某种选择时,你是否能服从国家需要、回来服务国家?”吴岳良给出了肯定的答案。在美国、德国从事科研的近10年里,他与周光召始终保持着联系。只要周光召出访到吴岳良所从事科学研究的国家,他们定会约上见面,他向吴岳良介绍国内科技的发展,而吴岳良也会向导师汇报近况和研究进展。1996年,在周光召的召唤下,吴岳良回国从事科学研究,也就是从那时起,他与导师合作开启了超统一理论的研究工作。在科研工作中,周光召敢于挑战权威的特点对吴岳良产生了深远影响,帮助他度过“至暗时刻”。“理论物理研究是一个否定之否定的过程,需要不断否定自己,最终找到一个比较肯定的答案,但否定自己容易,否定别人,尤其是权威是十分困难的。”吴岳良说。1993年前后,吴岳良正在进行“正反粒子变换和左右宇称反演联合对称性(CP)破坏和第六个基本粒子顶夸克性质”的研究,他对顶夸克质量的理论估算与欧洲核子中心早期一个有误的实验结果不一致。此外,他还提出了一个简单理论模型(包含粒子物理标准模型CP破坏机制在内的四类CP破坏源)。然而,由于这类模型被研究了二十多年,很多人认为不可能还有这么重要的理论结论没有被发现,由此,他的研究论文也“自然”被美国的顶尖期刊拒稿数次。那时,吴岳良在作博士后,别人一年都发表几篇甚至十几篇论文,而他在那一年只写一篇文章就为了认识这个问题。“压力的确很大。”他坦承。吴岳良想到导师在面对权威质疑时不迷信、独立思考的经历和教导,下定决心用了半年多的时间调研了过去所有的相关研究,并撰写了近80页的长文来证明模型的自洽性,最后的研究结果连续发表在美国《物理评论快报》上,该模型后来被国际同行专家称为模型Ⅲ2HDM。此外,周光召善于从事物的第一性考虑复杂问题的思考方式、对科研的执着等也使得吴岳良获益良多。导师的精神与理念,吴岳良将其传承至他的后辈学生之中。 彭桓武(左)、周光召(中)、吴岳良(右)师生三代 (中科院理论物理所供图)育人才:做真正原创的研究对于理论物理所研究员周宇峰来说,导师吴岳良教会他最多的便是独立思考能力。1999年他考入理论物理所,成为吴岳良的博士研究生。“在做博士期间,吴老师就特别强调独立思考能力,在对某个问题进行大量的调研后,形成自己的想法和判断,只有这样才能做出有高度的原创性工作。”周宇峰告诉《中国科学报》,吴老师不轻易盲从他人、甘做“冷板凳”的精神让自己受益匪浅。如今,周宇峰也不断挑战难题、新题,与导师亦师亦友,协同合作。他已成为暗物质理论、超出标准模型的新物理等方向的专家,提出了数个具有原创性的相互作用机制、计算方法和暗物质理论模型。而刘金岩走了一条与师兄师姐不同的发展之路。2010年,她成为吴岳良门下粒子物理专业的博士研究生,现为中国科学院自然科学史研究所副研究员。知史以明鉴,查古以至今。她告诉《中国科学报》,周光召先生曾提出,中国理论物理学应有自己史学研究,不能断代,导师吴岳良将此愿望记在了心里。在刘金岩即将博士毕业时,导师问她是否对物理学史感兴趣,因得知自然科学史所非常希望有理论物理背景,特别是量子力学和量子场论方面基础的青年人才加入,而喜欢历史的她回答“非常愿意”。在吴岳良的建议下,刘金岩进入中国科学院自然科学史所,投身至中国物理学史的研究。“受过粒子物理学专业训练,也使我在历史研究中更加得心应手。”刘金岩说。当前,国际物理学研究竞争日趋激烈。“我们到了不应再跟踪,而是做真正原始创新工作的时候了。”吴岳良说。但他同时也深感,当前由于涉及高能量和高强度及高精度的大型前沿实验进展放慢,理论物理发展也相对变得缓慢,但从另一方面来看这给我国理论物理学家提供了一个深入思考和研究并做出原创性科研成果的机遇。而国内的科研环境并不太利于基础研究,尤其像理论物理这样的纯基础研究,需要改革科研评价体制、营造开放交流的氛围,以及长期稳定的支持,让基础研究的科研人员有兴趣、热爱,驱动其做原创研究。“不得不承认,科学史上留下来的经典理论大多由国外科学家发现创立的。我们要成为科技强国,必须要培养年轻人才,做出能在科学史上留得下来的中国科学家创立的理论,为世界科学发展贡献一份力量。”吴岳良坚定地说。来源:韩扬眉 中国科学报
From July 13-16, 2020, the 2020 UCAS Gravitational Wave Summer School held successfully. UNESCO International Centre for Theoretical Physics Asia-Pacific (ICTP-AP) and Consortium of Gravitational Wave Detection Taiji Program in Space jointly sponsored this summer school.Due to the corona virus pandemic, the summer school was carried out on "cloud". All the teachers and students shared their opinions and research results through internet. Academician Yueliang Wu, (vice-president of the University of Chinese Academy of Sciences, director of ICTP-AP) academician Wenrui Hu (Institute of mechanics, CAS), and other 14 well-known experts from the ‘Taiji Consortium‘ conducted 16 wonderful lectures on the related research area of gravitational waves detection. Nearly 900 participants gathered online to explore the mysteries of gravitational waves and enjoy the charm of science.2020国科大优秀大学生引力波暑期学校成功举办由联合国教科文组织国际理论物理中心-亚太地区(ICTP-AP)和引力波探测太极联盟联合主办的2020中国科学院大学优秀大学生引力波暑期学校于2020年7月13-16日成功举办。中国科学院大学副校长、国际理论物理中心-亚太地区主任吴岳良院士,中科院力学所胡文瑞院士等14位来自‘太极联盟’的知名专家,围绕着引力波探测相关研究进行了16场精彩的系列讲座。四天时间里,有近九百人相聚“云端”,共话引力波的奥秘,体悟科学的乐趣。 暑期学校部分师生“云合影”受疫情影响,本次引力波暑期学校全程在“云端”进行,教师和学员均通过互联网进行线上互动。同时,充分利用互联网授课模式的优势,对外开放了暑期学校所有讲座,让更多人有机会接触到引力波探测领域的前沿知识。中国科学院院士、‘太极计划’总顾问胡文瑞先生为学员们带来了第一课:空间引力波探索。他为学员们生动的讲述了空间引力波探测发展的来龙去脉。国际理论物理中心-亚太地区主任、‘太极计划’首席科学家吴岳良院士为学员们讲述了‘太极计划’的发展历程,科学目标及技术路线。从放眼未来回归到引力波探测的历史长河,早在100年前,爱因斯坦就预言了引力波的存在,中科院理论物理研究所张元仲研究员详细讲述了相对论与引力波以及引力波的探测史。现在,我们也将成为这见证历史的一员。2015年,美国地面激光干涉引力波天文台(LIGO)首次在人类历史上直接探测到引力波的存在。王运永教授曾在在美国加州理工学院LIGO实验室从事引力波探测工作多年,对引力波探测有丰富的经验和先进的理念。此次暑期学校,他同罗子人研究员、刘河山研究员为学员们带来了空间引力波探测及其中的激光干涉相关知识。惯性传感器不仅在超高精度探测中应用,同时也在相对论基础科学、重力测量等领域都有广泛的应用。徐鹏教授向学员们介绍了它的工作原理和引力波探测器惯性基准,以及空间引力波探测中时间延迟干涉测量的相关知识。电推进和无拖曳控制技术在航天器轨道控制和姿态控制,确保卫星处于“超稳超静”状态中起到了至关重要的作用。贺建武研究员和章楚研究员就相关技术的工作原理和研究现状进行了讲解。在空间中组成卫星编队探测引力波对测量精度要求空前、各环节耦合性强、技术挑战极大。为确保卫星在太空中能够适应太空环境,顺利完成它的“使命”,全链路仿真是唯一能够快速发现任务潜在问题和风险,辅助研发和验证关键技术的有效方法。马晓珊研究员和强丽娥研究员针对空间引力波探测系统仿真技术为学员们带来了相关报告。LIGO自探测到引力波的存在以来,多次获得了黑洞合并的观测数据,韩文标研究员介绍了双黑洞并合引力波的基本原理和性质,曹周键研究员和金洪波研究员为同学们讲授了引力波数据处理与分析的相关知识。7月16日,暑期学校举行了闭幕仪式,邀请了技物所亓洪兴研究员和理论所优秀博士生刘畅作为导师和学生代表分享了自己的科研经历和心得体会。本次引力波暑期学校共有五位学员经专家考核脱颖而出,授予“2020国科大优秀大学生引力波暑期学校-优秀学员”称号,名单公布如下(按姓氏排序):引力波暑期学校为年轻学子提供了一个接触国际学科前沿的平台,将吸引更多的有志青年投身到引力波探测相关研究中。期待他们未来能够成为“太极计划“”的一员,为中国空间引力波探测做出卓越贡献。
The first International Symposium on Gravitational Waves (ISGW2017) was held from May 26 to 28 on the Yanqi campus of the University of Chinese Academy of Sciences (UCAS), Beijing, China. Nearly 120 participants from 11 countries and over 66 universities, institutions and international organizations attended the symposium. This symposium has been paid great attention by the Chinese Academy of Sciences,Ministry of Science and Technology,National Natural Science Foundation of China.The main topics of the symposium include• Gravitational Wave Physics• Missions, Strategies and Plans of Gravitational Wave Detection• Frontiers of Science and Technology in Gravitational Wave Detection• International Collaborations on Gravitational Wave DetectionThe aim of the symposium is to bring together leading experts in gravitational wave physics and gravitational wave detection to present the latest research advances and to discuss possible collaborations on gravitational wave detection. During the three-day symposium, 55 scientists (23 invited speakers and 22 parallel speakers) gave their wonderful talks. As the science and education area of the “one nuclear four area” of Huairou Science City, UCAS has attracted the attention of the world’s gravitational wave researchers for Huairou Science City this time.AsChinese Academy of Sciences has previously announced, UCAS is also the relying on unit of Chinese “Taiji Program” in Space. More than ten domestic scientific research institutions haveset up “Taiji Union” (Consortium of Gravitational Wave Detection Program in Space) during this symposium.Since the frequency of the gravitational wave signal is between 35Hz and 250Hz (the human ear can capture the sound frequency of 20Hz-20000Hz), we can use the ear to hear the magic of the gravitational wave. “The era of GW Astronomy has come, let’s start listening to the sounds of the cosmic jungle!” As professor Bernard F. Schutz said in the talk, the direct detection of gravitational waves opens a new window to explore our universe and indicates the coming of a new era of gravitational-wave astronomy.
中国青年报客户端北京1月8日电(中青报·中青网记者 孙庆玲)今天,微重力技术实验卫星“太极一号”在轨交付于中国科学院大学(以下简称“国科大”)。作为这颗卫星的主要用户,国科大将接手接下来的科学实验计划的制订、拓展实验安排、科学实验数据处理、科学产品发布等“攻关”任务。微重力技术实验卫星“太极一号”是中国科学院空间科学(二期)战略性先导科技专项首发卫星,也是我国首颗空间引力波探测技术实验卫星,旨在探测中低频段的引力波信号,从而发现天体质量更大、距离更遥远的引力波波源,揭示更为丰富的天体物理过程。“引力波是非常微弱的,对探测器的精确度要求非常高。”国科大副校长吴岳良院士做了个比喻,“这相当于拿一个西瓜在极弱的推力下碰撞一下喜玛拉雅山,我们要去测这时喜马拉雅山产生的加速度”。由于地球力场的影响,这种对引力波的探测实验在地面上是不可能实现的,所以把它放在了卫星上,去宇宙空间中进行实验、探测。而“太极一号”只是空间引力波探测的第一步,后续还将有“太极二号”“太极三号”。这颗卫星于2019年8月31日发射成功。当天,适逢国科大2019级新生开学典礼,中国科学院院长、国科大名誉校长白春礼在现场分享了这一消息,并指出“这颗卫星的主要用户是中国科学院大学”。杨天鹏 /摄据悉,国科大是空间引力波探测“太极联盟”的牵头单位,负责空间引力波探测“太极计划”项目的整体规划及协调,并承担了“太极一号”的科学应用系统研制和霍尔微推进系统研制等任务。历经半年的在轨测试,目前“太极一号”已经达到了研制任务书的要求,满足在轨交付条件,并于今天正式交付于国科大使用。“目前相当于搭建好了一个平台,交给了用户单位,用户单位可以进行技术验证、技术成果产出等。”吴岳良介绍,这颗卫星将主要用于对空间引力波探测、地球重力场反演、超高精度惯性导航等相关的技术进行验证和研究。这其中涉及到众多领域的技术及其应用,国科大可以利用 “科教融合”这一优势为联合中国科学院相关科研院所搭建起一座沟通的桥梁,整合多方的研究力量和资源,集中优势力量共同进行技术攻关。
China's first satellite to conduct experiments on key technologies related to space-based gravitational wave detection, Taiji-1, has successfully completed its in-orbit tests, the Chinese Academy of Sciences (CAS) announced Wednesday.The satellite, sent into orbit on Aug. 31, 2019, is China's first such kind of satellite, and has completed its in-orbit experiments, making a breakthrough in the country's gravitational wave detection, said Wu Yueliang, chief scientist of the project.After four months of tests and experiments, it was proved that the satellite system has performed well in orbit and completed all the experiments required for research, Wu added.With the success of Taiji-1's in-orbit tests, the first goal of CAS's three-step strategy to implement the program has been successfully achieved.Taiji-1 will conduct more expansion experiments in the next stage, said Wu.
On November 24, space gravitational wave detection Taiji consortium 2019 annual meeting held successfully at University of Chinese Academy of Sciences (UCAS). The UNESCO International Centre for Theoretical Physics Asia-Pacific (ICTP-AP), and Taiji consortium jointly sponsored this meeting. The conference focused on the research of gravitational wave physics and the detection technology. It has attracted active participation of more than 160 experts and scholars from 36 institutions to discuss the latest scientific results and future development of gravitational wave detection.Yanfen Wang (vice-president of UCAS), Wenrui Hu (chief scientific adviser of Taiji Programme, Institute of Mechanics CAS), Min Huang (deputy commissioner of Bureau of Frontier Science and Education CAS), Xiaolong Dong (deputy director of National Space Science Center CAS) and Zijie Li (deputy chief of Photoelectric and Universe Section of Bureau of Major R&D Programs CAS) on behalf of Yingjie-Yu commissioner attended the meeting and delivered speeches.Yanfen Wang, on behalf of UCAS, extended a sincere welcome to all the representatives and congratulated the convening of the 2019 Taiji consortium meeting. In her speech, she stressed that Taiji consortium is not only an important platform for all-round and multi-disciplinary scientific cooperation among academic institutions but also important support for the cultivation of innovative talents in related fields.In May 2017, Taiji working group initiated and founded the ‘Taiji Consortium’ on the International Symposium on Space Gravitational Wave Detection. As an academic consortium, it brought experts in related fields together to carry out the research of gravitational wave space exploration.Taiji-01, the first satellite of Taiji programme, successfully launched into orbit on 31 August 2019. This means that the first step of the ‘three-step development’ strategy of ‘Taiji Program’ was initiated. The on-orbit test and data analysis results of Taiji-01 shows that:The first-stage in-orbit test showed that the accuracy of displacement measurement of the laser interferometer on Taiji-01 could reach a 100-picometer order of magnitude, equivalent to the size of an atom.The accuracy of the gravitational reference sensor on the satellite reached ten billionths of the magnitude of the earth's gravitational acceleration, equivalent to the acceleration produced by an ant pushing the Taiji-01 satellite.The thrust resolution of the micro-thruster on the satellite reached a scale equivalent to one-ten thousandth of the weight of a sesame grain.Taiji-01 Achieved: China’s highest accuracy of spatial laser interferometry. China’s first on-orbit drag free control technology test. Firstly and internationally on-orbit verification of micro-newton level radio frequency ion propulsion technology and dual mode hall-effect micro thruster technology.As the chief scientist of Taiji programme, professor Yueliang Wu, vice-president of UCAS, director of ICTP-AP, made a scientific interpretation of gravitational wave detection, and reported the progress of the orbit test of Taiji-01.Professor Jianyu Wang, president of Shanghai Branch of CAS and chief engineer of Taiji-01 project, reported and summarized the Taiji-01 satellite project.Professor Ronggen Cai, deputy director of the Institute of Theoretical Physics CAS introduced the relevant knowledge of gravitational waves and the significance of exploring gravitational waves from the perspective of fundamental physics research.Professor Weidou Ni from the National Astronomical Observatories CAS introduced his views on the future planning of the world's gravitational wave exploration and the discussion of the Taiji space gravitational wave detection mission.32 experts and scholars from 21 scientific institutions made academic reports on the relevant research of Taiji programme. This annual meeting provides a platform for cooperation and communication among members of Taiji consortium. It promotes in-depth exploration of scientific connotation and improves the influence of Taiji plan. Moreover, it also promotes interdisciplinary integration and the achievement of China's goal of space gravitational wave detection.
The early morning of August 31st witnessed the successful launching of a satellite for experiments under microgravity from Jiuquan Satellite Launching Center in northwestern China. Later named “Taiji-1”, this satellite marks the first under the Phase-II of the Strategic Priority Program on Space Science (SPPSS-II) sponsored by the Chinese Academy of Sciences (CAS). As confirmed by the National Space Science Center (NSSC), CAS in late September, the experiments aboard are so far in smooth operation, and the satellite in proper status with all test results reported normal. Model of Taiji-1, the first experiment satellite for space detection of gravitational waves. This announces the successful completion of the first stage of in-orbit tests and starts a journey to detect gravitational waves (GW) from space.Taiji-1, the first experiment satellite for space detection of gravitational waves (GW), got its name from Taiji Program, a space mission proposed by CAS to detect GWs when orbiting the Sun accompanying the Earth. Comprising of three satellites, it is designed to form an equilateral triangle flying 18 to 22 degrees ahead of the Earth, with each side spanning a distance of 3.0 million km. Scheduled to fly in around 2033, the conception of the mission can be traced back to 2008, when the Academy took the lead in China to explore the feasibility to detect gravitational waves from space. The following years saw it develop into a three-stage layout and roadmap, with its first stage featuring one satellite as a pathfinder, followed by a double-star and a trio-star stage. In August 2018, the single-star project for Taiji Program was officially adopted by SPPSS-II, taking the first step toward implementing the program. It took the satellite development team, consisting of experts from the CAS Innovation Academy for Microsatellites, only one year to develop and build the satellite. As indicated by the first results from the in-orbit tests and data analysis of Taiji-1, the interferometer aboard has achieved a measuring precision of hundred picometer level, making it able to discern a distance as small as the diameter of an atom. Besides, the gravitational reference sensor aboard is now able to detect fluctuations in Earth gravity as trivial as trillionths of the gravitational acceleration; and the resolution of its micro-thruster can tune its impulses less than one µN a time. The success lays a firm foundation for future detection of GWs in space.The GW is a type of matter wave originated from radical motion and change in mass and energy. As early as about 100 years ago, Albert Einstein predicted its existence based on his theory of general gravity. Not until 2015, however, did humankind first directly detect this space-time oscillation from Earth ground – LIGO (Laser Interferometer Gravitational-wave Observatory) eventually succeeded in picking up the weak, vague signals from the merger of binary black holes, after decades of efforts. Since then, human beings not only can “see” the cosmos via electromagnetic waves, but also “hear” its voices by virtue of GWs – this revolutionary experiment has invited one more “messenger” to tell the story of the cosmos.GWs of different frequencies give clues about various astrophysical processes occurring in different stages of cosmic evolution. The GWs detected from space fall in the mid- and low-frequency bands of the spectrum. Such space-time ripples are set off by more massive celestials compared to those of higher frequencies as detectable from the Earth ground. Free from the complexity of noise on the ground, space-based GW detectors might be able to capture weaker signals and find out more distant sources of them. This will help us reveal much enriched astrophysical phenomena and better understand how our universe works.Signals of GWs are extremely weak, however. This poses a great challenge on space detection of them and pushes it to the limits of existing human technologies for precise measurement and control. Taiji-1 has meant to test the feasibility of existing key technologies and verify their in-orbit implementation.Under the framework of SPPSS-II, CAS plans to fly a series of missions for various science goals, including the Gravitational Wave Electromagnetic Counterpart All-sky Monitor (GECAM), the Advanced Space-borne Solar Observatory (ASO-S), the Einstein Probe (EP) and the Solar wind Magnetosphere Ionosphere Link Explorer (SMILE), to detect electromagnetic signals from GW sources, black holes, fluctuations in solar activities, aimed at understanding the mechanisms underlying solar activities and the origin and evolution of the universe. All the above missions are to be launched by 2023.
HELSINKI — China launched a new meteorological satellite from Jiuquan late Sept. 24, adding to a series of recent government and commercial missions.The Yunhai-1 (02) satellite launched from Jiuquan in the Gobi Desert atop a Long March 2D hypergolic rocket at 8:54 p.m. Eastern Tuesday, making it Chinese five launches in under a month.The new Yunhai-1 series of satellites will be used mainly used for “detecting the atmospheric and marine environment and space environment, as well as disaster control and other scientific experiments”, according to state media.The satellites were developed by the Shanghai Academy of Spaceflight Technology (SAST), a subsidiary of the China Aerospace Science and Technology Corp. (CASC). CASC, the state-owned main contractor for Chinese space programs, stated in January that it aimed to carry out over 30 launches during 2019. The second half of the calendar year typically sees the majority of Chinese launch activity.The Tuesday mission took the Chinese orbital launch tally for the year to 20, including a failed Long March 4C launch. That number also includes one failed private launch and the first Chinese private launch to reach orbit.Liftoff despite prior earthquakeA Long March 3B lifted off from the Xichang Satellite Launch Center, southwestern China, Sept. 22, despite a nearby 3.5 magnitude earthquake just over a day prior.The launch used a Yuanzheng-1 upper stage to insert two Beidou navigation and positioning satellites into medium Earth orbits (MEO). A piece of a rocket engine, apparently resulting from the launch, was found downrange and posted on Chinese social media.This was the tenth launch of pairs of Beidou satellites to MEO, as China pushes to complete its own answer to the U.S. GPS. Further Beidou launches, to MEO and inclined geosynchronous orbits, are expected before the end of 2019. China aims to complete the 35-satellite Beidou constellation—which is named after the Big Dipper asterism—in the first half of 2020.The Wenchang Satellite Launch Center, located on Hainan island, also participated in the launch activities, according to reports.Wenchang hosts launches of China’s new, large cryogenic launch vehicles. The exercises may indicate ongoing ground preparations for the return-to-flight of the Long March 5, which could launch before the end of 2019. The Long March 5 is required for major projects, including the Chinese Space Station and upcoming lunar and Mars missions. It has been grounded since a launch failure in July 2017.Remote sensing, experimental polar, deorbit missionsEarlier this month a solid propellant Long March 11 carried five Zhuhai-1 remote sensing satellites into roughly 500-kilometer-altitude Sun synchronous orbits.The four hyperspectral and one video satellites are part of the development of the Zhuhai-1 commercial remote sensing constellation planned by Zhuhai Orbita Aerospace Science and Technology Co. Ltd. The launch took place at 02:42 a.m. Eastern Sept. 19 at the Jiuquan Satellite Launch Center and saw stage wreckage fall to Earth in Myanmar.Sept. 11 saw the return to action of the Long March 4 series following a May failure. Carrying the Ziyuan-1 (02) remote sensing satellite, the launch left wreckage downrange.Also aboard was the BNU-1 (Jingshi-1) small, experimental polar observation satellite from Beijing Normal University, and Taurus-1 (Jinniuzuo-1) a 3U CubeSat developed by Shanghai Aerospace Science and Technology Co., Ltd., also known as ASES Space. The latter carries a 2.5-square-meter deployable sail for deorbit tests for debris mitigation.Gravitational wave detectionA commercial Kuaizhou-1A launch Aug. 31 carried two payloads into orbit. The Chinese Academy of Sciences has now revealed that the satellite initially designated KX-09 is named Taiji-1. Furthermore the small has completed first-stage on-orbit experiments for space-based gravitational wave detection. Taiji-1 carried out on-orbit space laser interference measurements and will be joined in the coming years by two further satellites. The trio will aim to detect gravitational waves, described as “ripples” in space-time, caused by extremely violent events. These include merging black holes, colliding binary stars and supernovae.
On 20 September, the Chinese Academy of Sciences held a regular press conference, announcing that the first phase of the on-orbit test of the launched satellite of Taiji Program in Space has been successfully completed. At the conference, Xianglibin, vice president of the Chinese Academy of Sciences (CAS), officially named the satellite "Taiji-01".Prof. Bin Xiang-LiWith the efforts of all the members of Taiji-01, it only took one year for the development and launch of the satellite. The satellite successfully launched into orbit on 31 August 2019. This means that the first step of the ‘three-step development’ strategy of ‘Taiji Program’ was initiated.Taiji-01 Launched SuccessfullyIn Taiji-01 project, the University of Chinese Academy of Sciences (UCAS) is responsible for overall management of the science mission system and development of the micro hall-effect thruster system.Prof. Yue-Liang WuDuring the press conference, the chief scientist of ‘Taiji’ program, vice president of UCAS, director of International Centre of Theoretical Physics-Asia Pacific (ICTP-AP), Yue-Liang Wu interpreted the on-orbit test and data analysis results of the first phase of Taiji-01. The results show that: The measurement accuracy of laser interferometer reaches 100 pm. The measurement accuracy of gravitational reference sensor reaches a billionth . The thrust resolution ratio of micro thruster reaches sub-scale.Taiji-01 Achieved: China’s highest accuracy of spatial laser interferometry. China’s first on-orbit drag free control technology test. Firstly and internationally on-orbit verification of micro-newton level radio frequency ion propulsion technology and dual mode hall-effect micro thruster technology. Professor Wu introduced that, in 1916, Einstein predicted the existence of gravitational waves based on general relativity. It is a kind of matter wave generated by the violent movement and change of matter and energy. The research on gravitational waves will provide a new important window for observing the universe and promote humans understanding of the unknown world.Prof. Xiao-Long DongProf. Xiao-Long Dong, general manager of the project, introduced the development process, organization, and implementation of the Taiji-01 project. After that, Prof. Hua-Wang Li, introduced the platform and payload of the satellite system.Prof. Hua-Wang LiTaiji-01 has taken the first step in the exploration of space gravitational waves in China,and promoted the breakthrough of key technologies in the detection of space gravitational waves in China. ICTP-AP will also provide sustained support to the Taiji project and contribute to space gravitational waves detection.