Education Background
Sep,2002--July,2005 Institute of Theoretical Phyiscs, CAS, PhD
Sep,1999--July,2002 Zhengzhou University, Master
Sep,1995--July,1999 Zhengzhou University, Bachelor
引力理论与宇宙学,
主要从事引力波、早期宇宙物理、暗能量和计算宇宙学等研究。
Inspire论文检索:https://inspirehep.net/authors/1027868?ui-citation-summary=true#with-citation-summary
(95) Parameter inference for coalescing massive black hole binaries using deep learning, Universe 9 (2023) 407.
(94) Enhanced curvature perturbations from spherical domain walls nucleated during inflation, Phys. Rev. D108 (2023) 063005.
(93) Taiji data challenge for exploring gravitational wave universe, Front. Phys. 18 (2023) 64302.
(92) Rapid search for massive black hole binary coalescences using deep learning, Phys. Lett. B841 (2023) 137904.
(91) Confusion noise from Galactic binaries for Taiji, Phys. Rev. D107 (2023) 064021.
(90) Constraints on ultraslow-roll inflation from the third LIGO-Virgo observing run, Phys. Rev. D107 (2023) 043528.
(89) Constraining first-order phase transitions with curvature perturbations, Phys. Rev. Lett. 130 (2023) 051001.
(88) First machine learning gravitational-wave search mock data challenge, Phys. Rev. D107 (2023) 023021.
(87) Testing primordial black hole and measuring the Hubble constant with multiband gravitational-wave observations, JCAP 01 (2023) 006.
(86) Generation of gravitational waves in dynamical Chern-Simons gravity, Phys. Rev. D106 (2022) 124044.
(85) No-go guide for late-time solutions to the Hubble tension: Matter perturbations, Phys. Rev. D106 (2022) 063519.
(84) Hubble parameter estimation via dark sirens with the LISA-Taiji network, Natl. Sci. Rev. 9 (2022) nwab054.
(83) Primordial black hole production during first-order phase transitions, Phys. Rev. D105 (2022) L021303.
(82) Dependence of the amplitude of gravitational waves from preheating on the inflationary energy scale, Phys. Rev. D105 (2022) 023507.
(81) Sampling with prior knowledge for high-dimensional gravitational wave data analysis, Big Data Mining and Analytics 5 (2022) 53-63.
(80) No-go guide for the Hubble tension : Late-time solutions, Phys. Rev. D105 (2022) L021301.
(79) Standard siren cosmology with the LISA-Taiji network, Sci. China-Phys. Mech. Astron. 65 (2022) 210431.
(78) Gravitational waves from resonant amplification of curvature perturbations during inflation, JCAP 10 (2021) 050.
(77) Large anisotropies of the stochastic gravitational wave background from cosmic domain walls, Phys. Rev. Lett. 126 (2021) 141303.
(76) China's first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna, Communications Physics 4 (2021) 34.
(75) Chameleon dark energy can resolve the Hubble tension, Phys. Rev. D103 (2021) L121302.
(74) Gravitational and electromagnetic radiation from binary black holes with electric and magnetic charges: Elliptical orbits on a cone, Eur. Phys. J. C81 (2021) 1048.
(73) Do the observational data favor a local void?, Phys. Rev. D103 (2021) 123539.
(72) The Gravitational-Wave Physics II: Progress, Sci. China-Phys. Mech. Astron. 64 (2021) 120401.
(71) Taiji program in space for gravitational universe with the first run key technologies test in Taiji-1, Int. J. Mod. Phys. A36 (2021) 2102002.
(70) The LISA-Taiji Network: Precision Localization of Coalescing Massive Black Hole Binaries, Research 2021 (2021) 6014164.
(69) Primordial black holes from cosmic domain walls, Phys. Rev. D101 (2020) 023513.
(68) Gravitational and electromagnetic radiation from binary black holes with electric and magnetic charges: Circular orbits on a cone, Phys. Rev. D102 (2020) 103520.
(67) Taiji program: gravitational-wave sources, Int. J. Mod. Phys. A35 (2020) 2050075.
(66) Primordial black holes and gravitational waves from parametric amplification of curvature perturbations, JCAP 06 (2020) 013.
(65) The LISA–Taiji network, Nature Astronomy 4 (2020) 108.
(64) Merger rate distribution of primordial black hole binaries with electric charges, Phys. Rev. D102 (2020) 043508.
(63) A brief analysis to Taiji: Science and technology, Results Phys. 16 (2020) 102918.
(62) Analytical approximation of the scalar spectrum in the ultraslow-roll inflationary models, Phys. Rev. D101 (2020) 083535.
(61) Gravitational waves from double-inflection-point inflation, Phys. Rev. D101 (2020) 023505.
(60) Constraining gravitational-wave polarizations with Taiji, Phys. Rev. D102 (2020) 124050.
(59) Gravitational wave production after inflation with cuspy potentials, Phys. Rev. D99 (2019) 103506.
(58) Effects of the merger history on the merger rate density of primordial black hole binaries, Eur. Phys. J. C79 (2019) 717.
(57) Effects of the surrounding primordial black holes on the merger rate of primordial black hole binaries, Phys. Rev. D99 (2019) 063523.
(56) Constraining the reionization history with CMB and spectroscopic observations, Phys. Rev. D99 (2019) 043524.
(55) Primordial Black Hole Production in Inflationary Models of Supergravity with a Single Chiral Superfield, Phys. Rev. D98 (2018) 063526.
(54) Super-Eddington accreting massive black holes explore high-z cosmology: Monte-Carlo simulations, Phys. Rev. D97 (2018) 123502.
(53) Gravitational Waves from Oscillons with Cuspy Potentials, Phys. Rev. Lett. 120 (2018) 031301.
(52) The gravitational wave physics, Natl. Sci. Rev. 4 (2017) 687.
(51) Lorentz invariance violation in the neutrino sector: a joint analysis from BBN and CMB, Eur. Phys. J. C77 (2017) 386.
(50) Null test of the cosmic curvature using H(z) and supernovae data, Phys. Rev. D93 (2016) 043517.
(49) Model of inflationary magnetogenesis, Phys. Rev. D93 (2016) 043541.
(48) Dodging the cosmic curvature to probe the constancy of the speed of light, JCAP 1608 (2016) 016.
(47) Magnetogenesis in bouncing cosmology, Phys. Rev. D94, (2016) 083524.
(46) Reheating Phase Diagram for Higgs Inflation, Phys. Rev. D92 (2015) 063506.
(45) Inflection point inflation and dark energy in supergravity, Phys. Rev. D91 (2015) 123502.
(44) Reconstructing interaction between dark energy and dark matter using Gaussian Processes, Phys. Rev. D91 (2015) 123533.
(43) Higgs Inflation in Gauss-Bonnet Brane-World, Phys. Rev. D92 (2015) 063514.
(42) Principal component analysis of the reionization history from Planck 2015 data, Phys. Rev. D92 (2015) 123521.
(41) Updated reduced CMB data and constraints on cosmological parameters, Int. J. Mod. Phys. D24 (2015) 1550071.
(40) Cosmological parameter estimation from CMB and X-ray clusters after Planck, JCAP 1405 (2014) 020.
(39) CMB anomalies from an inflationary model in string theory, Eur. Phys. J. C74 (2014) 3006.
(38) Constraints on the ΛCDM model with redshift tomography, Phys. Rev. D89 (2014) 123518.
(37) Reconstruction of the primordial power spectra with Planck and BICEP2, Phys. Rev. D90 (2014) 023544.
(36) Nucleosynthesis constraint on Lorentz invariance violation in the neutrino sector, Phys. Rev. D87 (2013) 123519.
(35) Obtaining the CMB anomalies with a bounce from the contracting phase to inflation, Phys. Rev. D88 (2013) 063539.
(34) Inflation coupled to a Gauss-Bonnet term, Phys. Rev. D88 (2013) 123508.
(33) Non-Gaussian features from the inverse volume corrections in loop quantum cosmology, Phys. Rev. D86 (2012) 044020.
(32) On asymmetric brane creation, JHEP 01 (2012) 019.
(31) Primordial power spectrum versus extension parameters beyond the standard model, Phys. Rev. D85 (2012) 103519.
(30) Cosmological constraints on Lorentz invariance violation in the neutrino sector, Phys. Rev. D86 (2012) 065004.
(29) Reconstruction of the primordial power spectrum from CMB data, JCAP 1108 (2011) 031.
(28) Uncorrelated estimates of the primordial power spectrum, JCAP 1111 (2011) 032.
(27) Observational constraints on the energy scale of inflation, Phys. Rev. D83 (2011) 083522.
(26) Slow-roll inflation with a Gauss-Bonnet correction, Phys. Rev. D81 (2010) 123520.
(25) Black Holes in the Dilatonic Einstein-Gauss-Bonnet Theory in Various Dimensions II -- Asymptotically AdS Topological Black Holes --, Prog. Theor. Phys. 121 (2009) 253-273.
(24) Power spectra from an inflaton coupled to the Gauss-Bonnet term, Phys. Rev. D80 (2009) 063523.
(23) Cosmological Evolution of Dirac-Born-Infeld Field, JCAP 04 (2008) 035.
(22) Black Holes in the Dilatonic Einstein-Gauss-Bonnet Theory in Various Dimensions I -- Asymptotically Flat Black Holes --, Prog. Theor. Phys. 120 (2008) 581-607.
(21) Accelerating Cosmologies in the Einstein-Gauss-Bonnet Theory with Dilaton, Prog. Theor. Phys. 118 (2007) 879-892.
(20) Probing the Coupling between Dark Components of the Universe, Phys. Rev. D76 (2007) 023508.
(19) Realizing Scale-invariant Density Perturbations in Low-energy Effective String Theory, Phys. Rev. D75 (2007) 023520.
(18) Parametrizations of the Dark Energy Density and Scalar Potentials, Mod. Phys. Lett. A22 (2007) 883-890.
(17) Cosmology with a Variable Chaplygin Gas, Phys. Lett. B645 (2007) 326-329.
(16) Two-Field Quintom Models in the w-w' Plane, Phys. Rev. D74 (2006) 127304.
(15) Constraints on the DGP Model from Recent Supernova Observations and Baryon Acoustic Oscillations, Astrophys. J. 646 (2006) 1-7.
(14) A Tracker Solution for a Holographic Dark Energy Model, Int. J. Mod. Phys. D15 (2006) 869-877.
(13) Parametrization of K-essence and Its Kinetic Term, Mod. Phys. Lett. A21 (2006) 1683-1690.
(12) Parametrization of Quintessence and Its Potential, Phys. Rev. D72 (2005) 023504.
(11) Cosmological Evolution of Interacting Phantom Energy with Dark Matter, JCAP 0505 (2005) 002.
(10) Interacting Phantom Energy, Phys. Rev. D71 (2005) 023501.
(9) Cosmological Evolution of a Quintom Model of Dark Energy, Phys. Lett. B608 (2005) 177-182.
(8) Attractor Behavior of Phantom Cosmology, Phys. Lett. B594 (2004) 247-251.
(7) Cosmological Scaling Solutions of Multiple Tachyon Fields with Inverse Square Potentials, JCAP 0408 (2004) 010.
(6) Inflationary Attractor in Braneworld Scenario, Phys. Rev. D69 (2004) 063502.
(5) Cosmological Scaling Solutions and Cross-coupling Exponential Potential, Phys. Lett. B576 (2003) 12-17.
(4) Inflationary Attractor from Tachyonic Matter, Phys. Rev. D68 (2003) 043508.
(3) Cosmological Scaling Solutions and Multiple Exponential Potentials, Phys. Lett. B568 (2003) 1-7.
(2) 5D Dirac Equation in Induced-Matter Theory, Int. J. Theor. Phys. 41 (2002) 1733-1743.
(1) Conformally Invariant Klein-Gordon Equation in Kaluza-Klein Theory, Int. J. Theor. Phys. 40 (2001) 1259-1266.